Skip to main content

Menu

Login

Explore more of Isaaffik

Collaborative Research: A 1500m Ice Core from South Pole

General

Project start
01.01.2012
Project end
31.12.2017
Type of project
ARMAP/NSF
Project theme
Cryosphere
Project topic
Cryosphere

Fieldwork / Study

Fieldwork country
Greenland (DK)
Fieldwork location

Geolocation is 0, 0

Fieldwork start
30.06.2014
Fieldwork end
30.06.2014

SAR information

Fieldwork / Study

Fieldwork country
Greenland (DK)
Fieldwork location

Geolocation is 0, 0

Fieldwork start
14.05.2014
Fieldwork end
28.06.2014

SAR information

Project details

02.06.2019
Science / project plan

.

Science / project summary
This project will drill and recover a new ice core from South Pole, Antarctica. The South Pole ice core will be drilled to a depth of 1500 m, providing an environmental record spanning approximately 40 kyrs. This core will be recovered using a new intermediate drill, which is under development by the U.S. Ice Drilling Design and Operations (IDDO) group in collaboration with Danish scientists. The intellectual merit of the work is that the analysis of stable isotopes, atmospheric gases, and aerosol-borne chemicals in polar ice has provided unique information about the magnitude and timing of changes in climate and climate forcing through time. The international ice core research community has articulated the goal of developing spatial arrays of ice cores across Antarctica and Greenland, allowing the reconstruction of regional patterns of climate variability in order to provide greater insight into the mechanisms driving climate change. The broader impacts of the project include obtaining the South Pole ice core will support a wide range of ice core science projects, which will contribute to the societal need for a basic understanding of climate and the capability to predict climate and ice sheet stability on long time scales. Second, the project will help train the next generation of ice core scientists by providing the opportunity for hands-on field and core processing experience for graduate students and postdoctoral researchers. A postdoctoral researcher at the University of Washington will be directly supported by this project, and many other young scientists will interact with the project through individual science proposals. Third, the project will result in the development of a new intermediate drill which will become an important resource to US ice core science community. This drill will have a light logistical footprint which will enable a wide range of ice core projects to be carried out that are not currently feasible.
Close